DataSheet.es    


PDF H5DU5182EFR Data sheet ( Hoja de datos )

Número de pieza H5DU5182EFR
Descripción (H5DU5162EFR / H5DU5182EFR) 512Mb DDR SDRAM
Fabricantes Hynix Semiconductor 
Logotipo Hynix Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de H5DU5182EFR (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! H5DU5182EFR Hoja de datos, Descripción, Manual

www.DataSheet4U.com
512Mb DDR SDRAM
H5DU5182EFR
H5DU5162EFR
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any
responsibility for use of circuits described. No patent licenses are implied.
Rev. 1.0 / Nov. 2009
1

1 page




H5DU5182EFR pdf
PIN DESCRIPTION
PIN TYPE
CK, /CK
Input
CKE Input
/CS
BA0, BA1
Input
Input
A0 ~ A12
Input
/RAS, /CAS, /
WE
DM
(LDM,UDM)
Input
Input
DQS
(LDQS,UDQS)
I/O
DQ
VDD/VSS
VDDQ/VSSQ
VREF
NC
I/O
Supply
Supply
Supply
NC
Rev. 1.0 / Nov. 2009
www.DataSheet4U.com
1H5DU5182EFR
H5DU5162EFR
DESCRIPTION
Clock: CK and /CK are differential clock inputs. All address and control input
signals are sampled on the crossing of the positive edge of CK and negative
edge of /CK. Output (read) data is referenced to the crossings of CK and /CK
(both directions of crossing).
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock sig-
nals, and device input buffers and output drivers. Taking CKE LOW provides
PRECHARGE POWER DOWN and SELF REFRESH operation (all banks idle), or
ACTIVE POWER DOWN (row ACTIVE in any bank). CKE is synchronous for
POWER DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchro-
nous for SELF REFRESH exit, and for output disable. CKE must be maintained
high throughout READ and WRITE accesses. Input buffers, excluding CK, /CK
and CKE are disabled during POWER DOWN. Input buffers, excluding CKE are
disabled during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVC-
MOS LOW level after VDD is applied.
Chip Select: Enables or disables all inputs except CK, /CK, CKE, DQS and DM.
All commands are masked when CS is registered high. CS provides for external
bank selection on systems with multiple banks. CS is considered part of the
command code.
Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVE, Read,
Write or PRECHARGE command is being applied.
Address Inputs: Provide the row address for ACTIVE commands, and the col-
umn address and AUTO PRECHARGE bit for READ/WRITE commands, to select
one location out of the memory array in the respective bank. A10 is sampled
during a Precharge command to determine whether the PRECHARGE applies to
one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be pre-
charged, the bank is selected by BA0, BA1. The address inputs also provide the
op code during a MODE REGISTER SET command. BA0 and BA1 define which
mode register is loaded during the MODE REGISTER SET command (MRS or
EMRS).
Command Inputs: /RAS, /CAS and /WE (along with /CS) define the command
being entered.
Input Data Mask: DM is an input mask signal for write data. Input data is
masked when DM is sampled HIGH along with that input data during a WRITE
access. DM is sampled on both edges of DQS. Although DM pins are input only,
the DM loading matches the DQ and DQS loading. For the x16, LDM corre-
sponds to the data on DQ0-Q7; UDM corresponds to the data on DQ8-Q15.
Data Strobe: Output with read data, input with write data. Edge aligned with
read data, centered in write data. Used to capture write data. For the x16,
LDQS corresponds to the data on DQ0-Q7; UDQS corresponds to the data on
DQ8-Q15.
Data input / output pin: Data bus
Power supply for internal circuits and input buffers.
Power supply for output buffers for noise immunity.
Reference voltage for inputs for SSTL interface.
No connection.
5

5 Page





H5DU5182EFR arduino
www.DataSheet4U.com
1H5DU5182EFR
H5DU5162EFR
POWER-UP SEQUENCE AND DEVICE INITIALIZATION
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those
specified may result in undefined operation. Power must first be applied to VDD, then to VDDQ, and finally to VREF
(and to the system VTT). VTT must be applied after VDDQ to avoid device latch-up, which may cause permanent dam-
age to the device. VREF can be applied anytime after VDDQ, but is expected to be nominally coincident with VTT.
Except for CKE, inputs are not recognized as valid until after VREF is applied. CKE is an SSTL_2 input, but will detect an
LVCMOS LOW level after VDD is applied. Maintaining an LVCMOS LOW level on CKE during power-up is required to
guarantee that the DQ and DQS outputs will be in the High-Z state, where they will remain until driven in normal oper-
ation (by a read access). After all power supply and reference voltages are stable, and the clock is stable, the DDR
SDRAM requires a 200us delay prior to applying an executable command.
Once the 200us delay has been satisfied, a DESELECT or NOP command should be applied, and CKE should be
brought HIGH. Following the NOP command, a PRECHARGE ALL command should be applied. Next a EXTENDED
MODE REGISTER SET command should be issued for the Extended Mode Register, to enable the DLL, then a MODE
REGISTER SET command should be issued for the Mode Register, to reset the DLL, and to program the operating
parameters. After the DLL reset, tXSRD(DLL locking time) should be satisfied for read command. After the Mode Reg-
ister set command, a PRECHARGE ALL command should be applied, placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a MODE REGISTER SET command
for the Mode Register, with the reset DLL bit deactivated low (i.e. to program operating parameters without resetting
the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.
1. Apply power - VDD, VDDQ, VTT, VREF in the following power up sequencing and attempt to maintain CKE at LVC-
MOS low state. (All the other input pins may be undefined.)
• VDD and VDDQ are driven from a single power converter output.
• VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation + 40mV VTT variation.
• VREF tracks VDDQ/2.
• A minimum resistance of 42 Ohms (22 ohm series resistor + 22 ohm parallel resistor - 5% tolerance) limits the
input current from the VTT supply into any pin.
• If the above criteria cannot be met by the system design, then the following sequencing and voltage relation-
ship must be adhered to during power up.
Voltage description
Sequencing
Voltage relationship to avoid latch-up
VDDQ
After or with VDD
< VDD + 0.3V
VTT After or with VDDQ
< VDDQ + 0.3V
VREF
After or with VDDQ
< VDDQ + 0.3V
2. Start clock and maintain stable clock for a minimum of 200usec.
3. After stable power and clock, apply NOP condition and take CKE high.
4. Issue Extended Mode Register Set (EMRS) to enable DLL.
5. Issue Mode Register Set (MRS) to reset DLL and set device to idle state with bit A8=high. (An additional 200
cycles(tXSRD) of clock are required for locking DLL)
6. Issue Precharge commands for all banks of the device.
7. Issue 2 or more Auto Refresh commands.
8. Issue a Mode Register Set command to initialize the mode register with bit A8 = Low
Rev. 1.0 / Nov. 2009
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet H5DU5182EFR.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
H5DU5182EFR(H5DU5162EFR / H5DU5182EFR) 512Mb DDR SDRAMHynix Semiconductor
Hynix Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar